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Optical tomography based on nonredundant array
scanning holography
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A novel technique termed nonredundant array scanning holography based on the principle of optical
heterodyne scanning holography and the tomographic technique of coded aperture imaging is proposed.
The system designed in terms of this technique codes an object optically and decodes its coded image
digitally. It can realize optical tomograms of three-dimensional objects. It also has potentially practical
value due to its compact structure. The computer simulations present the principle of the technique. Some
experiments at the proof-principle level are performed to test the principle.
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Optical heterodyne scanning holography (OSH) proposed
by T. C. Poon et all'l is a novel technique in which
three-dimensional (3-D) information of an object can be
recorded by two-dimensional (2-D) scanning. The tech-
nique involves optically scanning the 3-D object by a
time-dependent Fresnel zone plate (TDFZP) generated
by the superposition of a plane wave and a spherical
wave of different temporal frequencies. The reconstruc-
tion of the hologram can be achieved using an electron-
beam addressed spatial light modulator or performed
numerically!?3]. The OSH system has both advantages
of optics and electronics. However, its complexity makes
it difficult to be used in practice. In this paper, we use a
nonredundant array (NRA) fabricated by heliography to
replace the FZP coded aperture in OSH. The 3-D imag-
ing system with a NRA coded aperture has good quality
of reconstructed image contrast, because its point spread
function (PSF) has central spike and flat sidelobes. The
background noises of the reconstructed images are re-
duced with the method of spatial filtering. The computer
simulations demonstrate the principle of the system and
some experimental results at the proof-principle level are
achieved.

The setup of 3-D imaging system based on NRA scan-
ning holography is shown in Fig. 1. The laser beams
from semiconductor laser (Ag=650 nm) become uniform

after transmitting through a pinhole and the aperture
A,. The NRA aperture is located at depth z; away from
the pinhole. The object with thickness D is located at
depth 2. Set a Cartesian coordinate system (x1,y1,21)
with its origin at pinhole. Assume the intensity distri-
bution of the NRA aperture is I1(z1,¥1) at depth z.
The light beam illuminates the NRA aperture and then
a NRA projection is produced with intensity distribution
I(z,y; z) which is called the coded function. Assume a
3-D object with transmittance O(z,y;z) can be divided
into n discrete sections (i = 1,2,---,n). While the ob-
ject is scanned, a photomultiplier tube (PMT) collects
its transmitted light.

The hologram H(z,y;z2;) coded by the NRA projec-
tion at depth z = z; section is the convolution of the ith
sectional transmittance O(z,y; 2;) of the object with the
intensity distribution Iz(z,y;z;) of the NRA projection
arriving at the depth z = z; section. H(z,y;2;) can be
written as

H(z,y;2;) = 1)
where * is the convolution operator and H(z,y;z;) is
termed as the scanning hologram of the section at depth
z;. The whole hologram of the 3-D object is the sum of
all sectional hologram H(z,y;z;) given by

O(x7y1 Zi) * 12(x7y7 Z,‘),
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Fig. 1. Setup of 3-D imaging system based on NRA scanning holography.
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n

H(z,y,2) =Y  H(z,y;2). (2)

i=1

H(z,y; 2;) becomes numerical signal after A/D transfor-
mation and then the hologram (or coded image) is per-
formed digitally in a computer. The reconstructed image
(or decoded image) can be obtained by correlating the
scanning hologram with the decoding function. Assume
the decoding function is I} (z, y; z) and the decoding func-
tion of the section at depth z = z; is I3 (2, y; ;). Decod-
ing the H(z,y; z) with I}(x,y; z;), we obtain the output
image of the object as

PN

O(z,y; 2) = H(z,y; 2) * L(z, y; z5)
= O(z,y; 25) * [I2 (2, y; 25) * Iy (2, y; ;)]

+ Y {O(z,y;2)

i=1,i#4
Iz, y; 2:) % Iy (2, 45 25)]} 3)

where x is the correlation operator. The first term
of Eq. (3) representing the case of i = j gives us the
reconstruction of the hologram of depth z = z; de-
coded with Ij(z,y;z;). The second term representing
the case of ¢ # j gives us the reconstruction of the
hologram of depth z # z; with the decoding function
of depth 2 = 2;. Generally, for the system using the
NRA as coded and decoded aperture, the correlation
I(z,y; z;) x I1(z,y; 2;) becomes the autocorrelation of
I>(z,y; z;), if the depth z; of decoding function is equal
to that of the coding function, i.e. z; = 2;. Also, the cor-
relation In(x,y; 2;) x I3 (x,y; 2;) is called the system PSF.
In this case, the PSF is similar to a 2-D Dirac delta func-
tion &(z,y; 2;). As a result, we obtain the reconstructed
image of 3-D object at depth z = z; section from the first
term of Eq. (3). However, the correlation of the second
term of Eq. (3) represents the sum of cross correlations of
I (z,y; z;) with all sectional coding function I»(z,y;2;)
except that of z; section, which degrades the § function.
Consequently, the second term refers to the background
noises. Thus, Eq. (3) can be rewritten simply as

PN

O(z,y;2) = O(z,y; 2;) + N(z,y; 2), (4)

where N(z,y; z) represents the quasi uniform background
noises. Equation (4) indicates that if we use the decoding
function of a particular section to decode the scanning
hologram of the 3-D object, we derive the clear recon-
structed image of this section and the blurry images of
other sections. Hence, the different sectional tomograms
can be extracted when the depth z of the decoding func-
tion is selected.

A NRA means that each separation between all pos-
sible pairs of holes in an array will occur only once,
and thus the separations are nonredundanty. Ac-
cording to the definition we compile a program with
the Visual C++ to design the NRA. Let the NRA be
64 x 64 pixels, thus we obtain forty-six nonredundant
holes. Figures 2(a) and (b) show the pattern of the
NRA and its normalized autocorrelation function respec-
tively. As shown in Fig. 2(b), the autocorrelation consists
of a central spike with the flat sidelobes. This flat
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Fig. 2. Designing of the NRA. (a) Pattern of the NRA of
64 x 64 pixels; (b) 1-D slice through the normalized autocor-
relation function of the NRA.

background will introduce a white noise into the decoded
image, but it can be reduced with spatial filtering in fre-
quency domain.

Let the ith(i = 1,2,---, N) hole in the NRA be repre-
sented by f;(+)

0, if(z—&)*+(y—m)> >r]
() = . . 5
£i0) { 1, if(e - &)+ (y —m)® < rj (5)
The transmittance function of a NRA aperture at
depth z; with N holes becomes

D

N
Li(zn,m) =Y, fi(), (6)
i=1

where r; is the radius, & and 7; represent the Cartesian
coordinates of center of the ith hole, and here N is equal
to 46.

From simple geometry, the coded function Iz (z,v;2;)
is the magnified version of I; (z1,y1). Given by

n

L(z,y;2:) = L(z1,y1,0) = Y £1(), (7)

=1

where f/(-) is determined by the magnification factor
a = z/z. The decoding function I}(z,y; 2;) is equal to
the coded function.

Computer simulations are performed to present the
principle. An input image with array size of 100 x 100
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pixels is designed shown in Fig. 3(a), in which the diam-
eter of the circle is 10 pixels. The coded image shown
in Fig. 3(b) is generated numerically using Egs. (1) and
(7). The decoded image surrounded by the background
using Eqgs. (3) and (7) (let ¢ = 1) is shown in Fig. 3(c).
According to the concept of spatial filtering, the ap-
proximate white background noises locate at the center
in frequency domain and mix with the low frequency
information of the object. A high pass filter (HPF) is
valid to eliminate this kind of noise. Here, the diameter
of a central stop of the HPF is designed to be 3 pixels.
The filtering process consists of three steps. First, trans-
form the decoded image shown in Fig. 3(c) by Fourier
transformation (FT). Secondly, multiply the FT of the
decoded image with the HPF. Last, transform the result
above into spatial domain by inverse FT. The last result
is the decoded image with spatial filtering illustrated
in Fig. 3(d). Note that the most of background noises
are suppressed and the signal-to-noise ratio of the circle
becomes better. Change ¢ = 1 to a = 2 in Eq. (7), in
other words, let depth z of the decoding function be
mismatched with that of coded function, we get a blurry
decoded image like Fig. 3(e). This fact indicates that the
decoded image of a particular section can be extracted
only if the depth z of the decoding function is matched
with that of the coding function.

After simulations, we design and set up a 3-D imaging
system as shown in Fig. 1. Take a transparency as an ob-
ject on which there is a circle with diameter of 8 mm. The
NRA aperture with hole diameter of 1.5 mm is located
at depth z;=60 cm. Place the transparency at z=62
cm and 2'=70 cm respectively. During experiments, the
object moves in a 2-D way driven by an « — y scanner.
The scanning area is 5 x 5 cm? and the whole time takes
20 s. Figures 4(a) and (d) show the coded images of the
transparency at depth z = 62 cm and 2’ = 70 cm, respec-
tively. Figures 4(b) and (e) are the decoded images with
different decoding functions. It can be seen the decoded
images of the object with strong background noises. Fig-
ures 4(c) and (f) show the decoded images of Fig. 4(b)
and (e) with spatial filtering respectively. From above
figures, the circle is extracted from the background and
the background noises are suppressed. The experiments
verify the tomographic function of the 3-D imaging with
NRA coded aperture.

In fact the decoded images in Figs. 4(b) and (e) are also
affected by other factors such as mechanical vibration
of the z — y scanner and intensity floating of the laser.
Consequently, the noise intensity of the decoded images
in experiments is stronger than that in simulations. In
addition, if the number of holes of the NRA increases,
there will be a sharp decoded image and the background
of the decoded image will become more homogeneous
without increasing appreciably in intensity[®6].

We have shown the principle of the 3-D imaging sys-
tem based on NRA scanning holography. The coded
image of a 3-D object is recorded optically and the
decoded image is performed digitally, thus the system
can deal with the reconstructed images by means of ad-
vanced technique of digital images like spatial filtering in

(d) (e)
Fig. 3. Computer simulations. (a) Original image; (b) coded
image; (c) decoded image; (d) decoded image with high-pass
filtering; (e) decoded image with z mismatching.
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Fig. 4. Experimental tomograms. (a), (b) and (c) Coded im-
age, decoded image and decoded image with spatial filtering
at depth z = 62 cm; (d), (e) and (f) coded image, decoded im-
age and decoded image with spatial filtering at depth 2’ = 70
cm.

frequency domain. The system is possible to be used in
practice for its compact structure. Both simulations and
experiments show that the system offers some possibili-
ties for 3-D tomographic imaging.
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